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Abstract: This study evaluates four databases from PhysioNet: The American Heart Association
database (AHADB), Creighton University Ventricular Tachyarrhythmia database (CUDB), MIT-BIH
Arrhythmia database (MITDB), and MIT-BIH Noise Stress Test database (NSTDB). The ANSI/AAMI
EC57:2012 is used for the evaluation of the algorithms for the supraventricular ectopic beat (SVEB),
ventricular ectopic beat (VEB), atrial fibrillation (AF), and ventricular fibrillation (VF) via the
evaluation of the sensitivity, positive predictivity and false positive rate. Sample entropy, fast Fourier
transform (FFT), and multilayer perceptron neural network with backpropagation training algorithm
are selected for the integrated detection algorithms. For this study, the result for SVEB has some
improvements compared to a previous study that also utilized ANSI/AAMI EC57. In further,
VEB sensitivity and positive predictivity gross evaluations have greater than 80%, except for the
positive predictivity of the NSTDB database. For AF gross evaluation of MITDB database, the results
show very good classification, excluding the episode sensitivity. In advanced, for VF gross evaluation,
the episode sensitivity and positive predictivity for the AHADB, MITDB, and CUDB, have greater
than 80%, except for MITDB episode positive predictivity, which is 75%. The achieved results
show that the proposed integrated SVEB, VEB, AF, and VF detection algorithm has an accurate
classification according to ANSI/AAMI EC57:2012. In conclusion, the proposed integrated detection
algorithm can achieve good accuracy in comparison with other previous studies. Furthermore,
more advanced algorithms and hardware devices should be performed in future for arrhythmia
detection and evaluation.

Keywords: wearable sensor; arrhythmia; sample entropy; fast Fourier transform; artificial
neural networks

1. Introduction

Nowadays, wearable sensor-based system has been applied to wide applications. Fall and activity
monitoring study with utilizing wearable sensor has been conducted by Shany et al. [1]. This kind
of system was also used for Parkinson’s disease with the combination of Support Vector Machine
(SVM) by a study conducted by Patel et al. [2]. Meanwhile, Corbishley et al. used non-invasive and
continuous wearable system for breathing monitoring [3]. Furthermore, wearable electrocardiogram
(ECG) device was also utilized for the emotion classifications via hear rate variability [4].

Recently, the implementation of intensively evaluated ECG signal through wearable sensor is one
of the essential issues for the cardiovascular-related diseases. For example, arrhythmia has been one of

Sensors 2017, 17, 2445; doi:10.3390/s17112445 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9233-5251
http://dx.doi.org/10.3390/s17112445
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2445 2 of 14

the concerning cardiac diseases. Some of the arrhythmia cases are classified as life-threatening events.
Therefore, Rosenberg et al. utilized long-term monitoring system for atrial fibrillation monitoring [5].
A study by Baig et al. evaluated wearable ECG system for older-adult population [6]. Furthermore,
Fensli et al. utilized wearable sensor for arrhythmia detection applied to tele-home care system via
general packet radio service (GPRS) to personal computer as base station. This information will be
evaluated by doctors with remote system for the rhythm evaluation by the internet connection server [7].
Lin et al. developed an intelligent telecardiology system for sinus tachycardia, sinus bradycardia,
wide QRS complex, atrial fibrillation, and cardiac asystole [8]. This system can also activate emergency
alarm. In advanced, Hu et al. had successfully applied hidden Markov model to using wearable
system for ECG arrhythmia evaluation [9]. Meanwhile, recent study by Hadiyoso et al. also conducted
a study on arrhythmia detection via smart phone [10].

Atrial fibrillation (AF) and ventricular fibrillation (VF) are frequent arrhythmias. The former,
AF, is one of the arrhythmias related to age and has serious effect on morbidity, mortality, and cost [11].
AF also is an independent factor and has significant effect on the risk of stroke by a study conducted
by Wolf et al. on five thousand cases both female and male for more than thirty years [12]. Kara et al.
utilized power spectral density and Daubechies wavelets with backpropagation artificial neural
network (ANN) for AF detection [13]. Roonizi et al. used extended Kalman filter to evaluate AF
frequency [14]. A study by Mohebbi et al. investigated AF by applying the feature dimension reduction
technique with SVM classifier [15]. Abdul-Kadir et al. used dynamic ECG system according to second
order differential equation of ECG behavior with cross validation technique by utilizing SVM and
ANN as predictors [16]. Recently, Rajpurkar et al. have utilized one of the deep learning techniques,
namely a 34-layer convolutional neural network for detecting arrhythmia, including AF [17].

Another arrhythmia is VF. According to McWilliam, VF has strong correlation with sudden
cardiac diseases [18] and it is critical to defibrillation [19]. Alonso-Atienza et al. have applied
bootstrap resampling-based feature extraction SVM classifier for VF detection [20]. A study by Anas
et al. describes how empirical mode decomposition method is used to discriminate VF and non-VF
rhythms [21].

Atrial premature complex (APC) and ventricular premature complex (VPC) are other frequent
arrhythmias that, according to the ANSI/AAMI EC57:2012, can be classified as supraventricular
ectopic beat (SVEB) and ventricular ectopic beat (VEB). Research on detecting these conditions and
other arrhythmias have been in several previous studies. Thong et al., have utilized paroxysmal
atrial fibrillation for APC calculation [22]. Sayadi et al. have used extended Kalman filter for VPC
detection [23]. Similarly, a study by Özbay et al. that evaluated the performance of the neural networks
also performed the initialization of fuzzy C-means for APC, VPC, and other ECG arrhythmia [24].
Song et al. utilized support vector machine with the combination of dimensionality reduction using
principal component analysis, and linear discriminant analysis for arrhythmia classifier including APC
and VPC. They found better result as compared to multilayer perceptron (MLP) and fuzzy inference
system [25].

However, these previous studies are relatively computationally complex to be applied to wearable
devices. Several studies, which are relatively less computational complexity, performed well for AF and
VF detection. For AF detection, Zhou et al. proposed a powerful algorithm for real time detection of AF.
This study evaluated the heart rate to create a symbolic and word sequences. In advanced, Shannon
entropy was utilized to evaluate the word sequence in order to classify AF [26]. On the other hand,
FFT algorithm has been a robust algorithm for signal detection algorithm in recent studies [27–30]
and has been effectively applied for VF detection for decades. For VF, Clayton et al. evaluated
signal spectrum by utilizing fast Fourier transform (FFT) and maximum entropy for VF detection [31].
Afonso et al. applied short time Fourier transform (STFT), smoothed pseudo Wigner-Ville distribution
and cone-shaped kernel for the VF evaluation [32]. Recently, wearable sensor-based system has been
widely applied and utilized, the chance of the real-time evaluation for the arrhythmia detection with
the less-complicated algorithms is highly likely an acceptable investigation. Hence, the main purpose
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of this study is to efficiently apply less complexity algorithms for real-time detection of arrhythmias
utilizing wearable devices based on ANSI/AAMI EC57:2012 evaluation.

2. Materials and Methods

For the hardware part, BC1 ECG device (Bio Clothing One, XYZ life BC1, Kinpo Inc., Taipei,
Taiwan) single lead heart rate monitor front end is ADI ADS 8232 (Analog Devices, Inc., Norwood,
MA, USA). The BC1 ECG device uses wet electrode. The detail of the BC1 ECG device is shown in
Figure 1. Meanwhile, its specification is shown in Table 1. This device is configured by 0.5 Hz two-pole
high-pass filter and two-pole 40 Hz for the low-pass filter [33]. For the micro controller unit (MCU),
Texas Instruments MSP430 series is selected to have an ultra-low power unit that has 128 KB flash
ROM and 8 kB SRAM. This unit is a 16-bit reduced instruction set computer (RISC) architecture of up
to 25 MHz system clock with 12-bit analog-to-digital converter (ADC). In further, the Bluetooth low
energy (BLE) using Texas Instruments CC25 series (Texas Instruments Incorporated, Dallas, 75243 TX,
USA) connection system is utilized to have a power-optimized system-on-chip (SOC) solution that
supports maximum 2 Mbps data rates. The small start button powers the device on. The device will
detect the connection of the Bluetooth, which will either associate the smartphone or not. When there
is no Bluetooth device connection, the device will be turned to off-line state allowing the data to be
stored only in the SD card. Meanwhile, the on-line evaluation will send real-time ECG data to the
smartphone application for the arrhythmia classification.

This study uses PhysioNet database [34] for algorithm development and testing. Furthermore,
simulator data from Fluke ProSim 8 vital sign patient monitor simulator (Fluke Biomedical Division
of Fluke Electronics Corporation, Everett, 98203 WA, USA) is conducted for real-time detection.
The four databases provided by PhysioNet are American Heart Association database (AHADB),
Creighton University Ventricular Tachyarrhythmia database (CUDB) [34,35], MIT-BIH Arrhythmia
database (MITDB) [34,36], and MIT-BIH Noise Stress Test database (NSTDB) [34,37]. For SVEB
(i.e., APC) classification, 44 records for MITDB is analyzed. Meanwhile for VEB (i.e., VPC) detection,
78 records for AHADB, 44 records for MITDB, and 12 records for NSTDB are used in the evaluation.
For AF detection, 44 records for MITDB are utilized for the evaluation. Furthermore, 78 records for
AHADB, 44 records for MITDB, and 35 records for CUDB are used for VF classification. Evaluation of
sensitivity (Se), positive predictivity (+P), and false positive rate (FPR) are defined for the evaluation
performance of SVEB (i.e., APC) and VEB (i.e., VPC). Meanwhile, episode sensitivity (ESe), episode
positive predictivity (E + P), duration sensitivity (DSe), and duration positive predictivity (D + P) are
utilized for AF and VF detections. All of the evaluations are performed according to ANSI/AAMI
EC57:2012 [38].

For simulation and visualization in smartphone for real-time application, Fluke ProSim 8 is also
utilized. Simulation data includes several ECG rhythms: normal sinus rhythm, APC, VPC, AF, and VF
signals in real-time situation and evaluation on the smartphone. Initially, simulation data from Fluke
simulator is transferred to BC1. Programming of the arrhythmia algorithm is conducted in Java
(Android) and Objective-C (iOS). The performance of this algorithm is evaluated by WFDB (WaveForm
DataBase) software on Windows acquired from PhysioNet.

Sensors 2017, 17, 2445 3 of 14 

 

the arrhythmia detection with the less-complicated algorithms is highly likely an acceptable 
investigation. Hence, the main purpose of this study is to efficiently apply less complexity 
algorithms for real-time detection of arrhythmias utilizing wearable devices based on ANSI/AAMI 
EC57:2012 evaluation. 

2. Materials and Methods  

For the hardware part, BC1 ECG device (Bio Clothing One, XYZ life BC1, Kinpo Inc., Taipei, 
Taiwan) single lead heart rate monitor front end is ADI ADS 8232 (Analog Devices, Inc., Norwood, 
MA, USA). The BC1 ECG device uses wet electrode. The detail of the BC1 ECG device is shown in 
Figure 1. Meanwhile, its specification is shown in Table 1. This device is configured by 0.5 Hz 
two-pole high-pass filter and two-pole 40 Hz for the low-pass filter [33]. For the micro controller unit 
(MCU), Texas Instruments MSP430 series is selected to have an ultra-low power unit that has 128 KB 
flash ROM and 8 kB SRAM. This unit is a 16-bit reduced instruction set computer (RISC) architecture 
of up to 25 MHz system clock with 12-bit analog-to-digital converter (ADC). In further, the 
Bluetooth low energy (BLE) using Texas Instruments CC25 series (Texas Instruments Incorporated, 
Dallas, 75243 TX, USA) connection system is utilized to have a power-optimized system-on-chip 
(SOC) solution that supports maximum 2 Mbps data rates. The small start button powers the device 
on. The device will detect the connection of the Bluetooth, which will either associate the 
smartphone or not. When there is no Bluetooth device connection, the device will be turned to 
off-line state allowing the data to be stored only in the SD card. Meanwhile, the on-line evaluation 
will send real-time ECG data to the smartphone application for the arrhythmia classification.  

This study uses PhysioNet database [34] for algorithm development and testing. Furthermore, 
simulator data from Fluke ProSim 8 vital sign patient monitor simulator (Fluke Biomedical Division 
of Fluke Electronics Corporation, Everett, 98203 WA, USA) is conducted for real-time detection. The 
four databases provided by PhysioNet are American Heart Association database (AHADB), 
Creighton University Ventricular Tachyarrhythmia database (CUDB) [34,35], MIT-BIH Arrhythmia 
database (MITDB) [34,36], and MIT-BIH Noise Stress Test database (NSTDB) [34,37]. For SVEB (i.e., 
APC) classification, 44 records for MITDB is analyzed. Meanwhile for VEB (i.e., VPC) detection, 78 
records for AHADB, 44 records for MITDB, and 12 records for NSTDB are used in the evaluation. For 
AF detection, 44 records for MITDB are utilized for the evaluation. Furthermore, 78 records for 
AHADB, 44 records for MITDB, and 35 records for CUDB are used for VF classification. Evaluation 
of sensitivity (Se), positive predictivity (+P), and false positive rate (FPR) are defined for the 
evaluation performance of SVEB (i.e., APC) and VEB (i.e., VPC). Meanwhile, episode sensitivity 
(ESe), episode positive predictivity (E + P), duration sensitivity (DSe), and duration positive 
predictivity (D + P) are utilized for AF and VF detections. All of the evaluations are performed 
according to ANSI/AAMI EC57:2012 [38].  

For simulation and visualization in smartphone for real-time application, Fluke ProSim 8 is also 
utilized. Simulation data includes several ECG rhythms: normal sinus rhythm, APC, VPC, AF, and 
VF signals in real-time situation and evaluation on the smartphone. Initially, simulation data from 
Fluke simulator is transferred to BC1. Programming of the arrhythmia algorithm is conducted in 
Java (Android) and Objective-C (iOS). The performance of this algorithm is evaluated by WFDB 
(WaveForm DataBase) software on Windows acquired from PhysioNet. 

 

Figure 1. The BC1 electrocardiogram (ECG) device: (a) Front and back views; (b) Processing, 
transmitting and saving units detail; and, (c) Position with the electrodes. 
Figure 1. The BC1 electrocardiogram (ECG) device: (a) Front and back views; (b) Processing,
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Table 1. The BC1 device specification.

CMRR (Common-mode rejection ratio) 80 dB (dc to 60 Hz)
High signal gain (G = 100) with dc blocking capabilities

Single-supply operation 2.0 V to 3.5 V
ADC (Analog-to-Digital Converter) 12-bit

Input Impedance 5 Giga Ohm

The integrated evaluation is started by evaluating the APC, VPC, AF, and VF based on
ANSI/AAMI EC57:2012, as shown in Figure 2. Originally, the data downloaded from PhysioNet [34–37]
is downsampled to 200 Hz. Initially the 5-min ECG signal is evaluated either based on the beat, for VPC,
AF, and APC evaluations or the raw ECG signal, the 2-s window, for VF detection.

VPC evaluation is initiated by the R-R interval evaluation. The evaluation is calculated based-on
the study by Hamilton et al. [39]. Another study by Hamilton [40] is utilized for VPC evaluation,
as shown on Figure 2A. For AF calculation, the previous evaluation of VPC beat is essentially
important. The abnormal beats (i.e., VPC beats) will imitate the R-R interval in the normal rhythm.
This phenomenon highly likely increases the uncertainty in classifying either normal or AF rhythm.
Previous classification results for detecting VPC will be utilized to reform the original R-R interval by
averaging the previous beat and the next beat. The AF evaluation is originally calculated based on
Zhou et al. study [26]. The heart rate is calculated from the original R-R interval. This heart rate is
converted to symbolic sequence using Equation (1). Furthermore, this symbolic sequence is utilized
for the word value by Equation (2) as shown by the following:

syn =

{
63 i f hrn ≥ 315

bhrn/5c other cases
(1)

wvn =
(

syn−2 x 212
)
+
(

syn−1 x 26
)
+ syn (2)

where hr is the heart rate, syn is the symbolic sequence, and wvn is the word value. This word value
sequence evaluation, originally calculated using Shannon entropy, is replaced by sample entropy
algorithm [41]. AF evaluation can be seen in Figure 2B.

For APC detection, the morphological ECG is utilized for feature extraction and artificial neural
networks. Multi-layer perceptron with backpropagation training algorithm and single hidden layer
is utilized. Features for the ANN input extracted from ECG signal are P-R interval, QRS duration,
R-R interval, next R-R interval, average, and standard deviation of R-R interval of 10 beats before and
after the current beat, and R-wave amplitude, as shown in Figures 2C and 3, which is based on our
previous study [42]. The data is divided into 60% for training, 20% for validation, and 20% for testing.

After R-R interval-based algorithm is performed, the raw ECG signal-based evaluation is
calculated. The initial 5-min ECG segment is reshaped to several 2-s ECG signals. This evaluation is
organized to avoid mixed rhythms for the classification. The periodogram evaluation is utilized by
finding its maximum point corresponding to the frequency of the shortened ECG segments. According
to Lo et al., the dominant VF waveform frequency is between 1 Hz and 7 Hz [43]. Our study utilizes
a similar range with some offset. Three focused area of maximas are defined. The first one is the VF
area (p_vf). This area is located in between the frequency of greater than equals to 2.61 Hz and less
than equals to 4.95 Hz. The next area is the first area of non-VF (p_nVF), which is between frequency
greater than 0.5 Hz and less than 2.61 Hz. The last area is the second non-VF (p_nVF2), which is
located between frequency greater than 4.95 Hz and less than or equals to 10 Hz. The ratio of the p_vf
to the summation of the p_nVF and p_nVF2 is defined in order to classify either normal or VF rhythm.
The threshold of the ratio is fixed to 3.96. The detailed evaluation of the VF arrhythmia can be seen in
Figure 2D.
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Figure 2. Integrated arrhythmia evaluation flowchart; (A) Ventricular premature complex
detection; (B) Atrial fibrillation detection; (C) Atrial premature complex detection; (D) Ventricular
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Figure 3. Artificial neural network (ANN) structure for detecting normal or abnormal beat in APC
detection algorithm.

3. Results

Prior to PhysioNet database evaluation, Fluke simulator data of Normal sinus rhythm, APC, VPC,
AF, and VF are utilized from BC1 for algorithm evaluation on smartphone in real-time condition.
Besides, visualizing real-time signals with its signal annotation are shown in Figure 4. For APC and
VPC, detection is evaluated based-on the R-wave of the ECG signal. Meanwhile, normal sinus rhythm,
AF and VF evaluation works based-on a segment. The mobile application is also able to store the
documented signal with its signal annotation as the off-line evaluation records that can be seen in
Figure 5.



Sensors 2017, 17, 2445 6 of 14
Sensors 2017, 17, 2445 6 of 14 

 

 

Figure 4. Simulation result from Fluke simulator displayed on mobile phone; (a) Normal sinus 
rhythm; (b) Atrial Premature Complex (APC); (c) Ventricular Premature Complex (VPC); (d) Atrial 
fibrillation; and, (e) Ventricular fibrillation.  

The entire evaluation of arrhythmia can be seen in Tables 2 and 3. For SVEB (i.e., APC) 
evaluation utilizing the MITDB database, the performances are 79.87%, 67.14%, and 1.323%, 
respectively, for the gross evaluation of Se, +P and FPR. Meanwhile for the average evaluation, Se, 
+P and FPR are 71.35%, 36.9%, and 2.098%, respectively.  

The next evaluation is VEB (i.e., VPC). For this evaluation, utilizing a study by Hamilton [38], 
the gross evaluation from AHADB for Se, +P and FPR are 89.75%, 96.08%, and 0.371%, respectively. 
For average evaluation, Se, +P and FPR are 86.52%, 84.67%, and 0.458%. For MITDB database, the 
algorithm performances are 93.10%, 95.65% and 0.321% for gross evaluation of Se, +P, and FPR, 
respectively. Average evaluation has Se, +P, and FPR by 87.27%, 73.26%, and 0.336%, respectively. 
The third database for the VEB evaluation utilizes the NSTDB database. The performance for this 

Figure 4. Simulation result from Fluke simulator displayed on mobile phone; (a) Normal sinus rhythm;
(b) Atrial Premature Complex (APC); (c) Ventricular Premature Complex (VPC); (d) Atrial fibrillation;
and, (e) Ventricular fibrillation.

The entire evaluation of arrhythmia can be seen in Tables 2 and 3. For SVEB (i.e., APC) evaluation
utilizing the MITDB database, the performances are 79.87%, 67.14%, and 1.323%, respectively, for the
gross evaluation of Se, +P and FPR. Meanwhile for the average evaluation, Se, +P and FPR are 71.35%,
36.9%, and 2.098%, respectively.

The next evaluation is VEB (i.e., VPC). For this evaluation, utilizing a study by Hamilton [38],
the gross evaluation from AHADB for Se, +P and FPR are 89.75%, 96.08%, and 0.371%, respectively.
For average evaluation, Se, +P and FPR are 86.52%, 84.67%, and 0.458%. For MITDB database,
the algorithm performances are 93.10%, 95.65% and 0.321% for gross evaluation of Se, +P, and FPR,
respectively. Average evaluation has Se, +P, and FPR by 87.27%, 73.26%, and 0.336%, respectively.
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The third database for the VEB evaluation utilizes the NSTDB database. The performance for this
database for gross evaluation respectively for the Se, +P and FPR are 83.22%, 45.79% and 10.180%.
The average evaluation has 58.17%, 50.86% and 9.032% respectively Se, +P and FPR.

The next evaluation is for AF and VF rhythms. AF performance evaluation is calculated using
MITDB database. For the gross evaluation, the performances are 62%, 100%, 92%, and 92% for ESe,
E + P, DSe, and D + P, respectively. The average evaluations for ESe, E + P, DSe, and D + P, are 70%,
100%, 85%, and 86%.

The next evaluation is VF detection. This evaluation starts using AHADB database. For the gross
evaluation, performances are 90%, 95%, 28%, and 97% for ESe, E + P, DSe, and D + P, respectively.
Average evaluations for ESe, E + P, DSe, and D + P are 94%, 69%, 33%, and 70%. The second database
used for VF evaluation is MITDB database. The gross evaluations are 100%, 75%, 69%, and 88%
for ESe, E + P, DSe, and D + P, respectively. For average evaluation, it is 100%, 33%, 69%, and 33%
for ESe, E + P, DSe, and D + P, respectively. The last database utilized for VF evaluation is CUDB.
For this database, the gross evaluations are 83%, 90%, 32%, and 94% for ESe, E + P, DSe, and D + P,
respectively. Meanwhile, for average evaluation it is 84%, 83%, 40%, and 84%, for ESe, E + P, DSe,
and D + P, respectively.

Table 2. The entire supraventricular ectopic beat (SVEB) (i.e., APC) and ventricular ectopic beat (VEB)
(i.e., VPC) evaluation result. (* = exclude records 2202, 8205; ** = exclude records 102, 104, 107, 217;
N/A: not available. Se = Sensitivity, +P = Positive predictivity and FPR = False positive rate).

Database Statistics
SVEB VEB

Se +P FPR Se +P FPR

AHADB *
Gross N/A N/A N/A 89.75 96.08 0.371

Average N/A N/A N/A 86.52 84.67 0.458

MITDB **
Gross 79.87 67.14 1.323 93.10 95.65 0.321

Average 71.35 36.9 2.098 87.27 73.26 0.336

NSTDB
Gross N/A N/A N/A 83.22 45.79 10.180

Average N/A N/A N/A 58.17 50.86 9.032

Table 3. The entire atrial fibrillation (AF) and VF evaluation result. (* = exclude records 2202, 8205;
** = exclude records 102, 104, 107, 217; N/A: not available. ESe = Episode sensitivity, E + P = Episode
positive predictivity, DSe = Duration sensitivity, D + P = Duration positive predictivity).

Database Statistics
AF VF

ESe E + P DSe D + P ESe E + P DSe D + P

AHADB *
Gross N/A N/A N/A N/A 90 95 28 97

Average N/A N/A N/A N/A 94 69 33 70

MITDB **
Gross 62 100 92 92 100 75 69 88

Average 70 100 85 86 100 33 69 33

CUDB
Gross N/A N/A N/A N/A 83 90 32 94

Average N/A N/A N/A N/A 84 83 40 84
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4. Discussion

This study evaluates several arrhythmias, SVEB (i.e., APC), VEB (i.e., VPC), AF, and VF, based-on
ANSI/AAMI EC57:2012 of totally 169 records from three PhysioNet databases with applying less
computationally complicated algorithms. The performances of the algorithms are evaluated based-on
the sensitivity, positive predictivity, and false positive rate. The applied methods utilized in this
study are relatively less complex; namely sample entropy, FFT, and the ANN. For ANN, the features
extracted from ECG signal are also acceptable in the feedforward run. This condition has purposed to
minimize the computational time, while performing testing in the real-time application.

In order to study the measurement evaluation of previous studies conducted based-on
ANSI/AAMI EC57, the results are compared to our results as shown on Table 4 for SVEB and VEB
results. For SVEB and VEB, a study conducted by De Chazal et al. [44] is investigated. This study
showed that SVEB evaluation produced gross evaluation of Se, +P and FPR as 75.9%, 38.5%, and 4.7%,
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respectively. For comparison purposes, we found that our study has better performances with respect
to gross evaluation of Se, +P and FPR, which are 79.87%, 67.14%, and 1.323%, respectively. For VEB
classification, De Chazal et al. [44] has gross evaluation of Se, +P and FPR are 77.7%, 81.9%, and 1.2%.
Meanwhile, with utilizing a study by Hamilton [40], our results also showed better achievement by
producing 93.1%, 95.65%, and 0.321%, respectively, for gross evaluation of Se, +P and FPR.

Table 4. The SVEB (i.e., APC) and VEB (i.e., VPC) result comparison.

Sensitivity (%) Positive Predictivity (%) False Positive Rate (%)

This Study De Chazal et al. [44] This Study De Chazal et al. [44] This Study De Chazal et al. [44]

SVEB 79.87 75.9 67.14 38.5 1.323 4.7
VEB 93.1 77.7 95.65 81.9 0.321 1.2

For AF study, results are compared with a previous study conducted by Young et al. [45].
This study performed hidden Markov model (HMM) evaluation using ANSI/AAMI:EC57 for
evaluation. Twelve MIT-BIH Arrhythmia database records were utilized for training. Furthermore,
for testing data, MIT-BIH AF database was used. In order to perform a comparison to this study,
only training results from Young et al. study are investigated. From the results of Young et al.
study, a sensitivity evaluation provides a better result of 97.7% as compared to this study evaluating
44 MIT-BIH Arrhythmia database records for ESe that has 62%, and DSe that has 92% for gross statistics
evaluations. However, this study produces better results for both E + P that has 100%, and D + P that
has 92% for gross statistics evaluations in comparison to their study, which resulted in 86.77% for the
positive predictivity.

For a VF comparison study, studies by Park et al. [46] and Moraes et al. [47] are utilized. A study
by Park et al. evaluated AHADB and MIT-BIH arrhythmia databases by applying decision rule-based
algorithm and utilizing ANSI/AAMI:EC57. This study has evaluated the duration sensitivity and
duration positive predictivity. For AHADB evaluations, a study by Park et al., utilized 11 records from
AHADB, have 98.1% and 99.1%, respectively, for the DSe and D + P results. Meanwhile, our study,
evaluating 78 records from AHADB, for DSe and D + P produces 28% and 97%, respectively for gross
statistics evaluations. Furthermore, for MIT-BIH arrhythmia database evaluation, a study by Park et al.,
evaluated only record 207, has 88.5% and 86.3% for DSe and D + P, respectively. Hence, this study,
utilizing 44 records, has achieved 69% and 88% for DSe and D + P, respectively.

Another study is performed for the purpose of VF evaluation comparison. Moraes et al. [47]
conducted a study by combining two algorithms, VF filter leakage and complexity measure algorithms.
This study has also utilized ANSI/AAMI:EC57 for the evaluation of CUDB. The combined algorithm by
Moraes et al. study provided sensitivity and positive predictivity evaluations, by utilizing 30 records.
For comparison study purposes, our results, utilizing 35 records, have 83% for ESe and 32% for
DSe gross statistics evaluations. Meanwhile, a study by Moraes et al. has 70.32% for the sensitivity.
In addition, the results of this study have 90% for E + P and 94% for D + P gross statistics evaluations.
However, study by Moraes et al. has 94.66% positive predictivity. The overall comparison of the
PhysioNet-based database for the AF and VF can be seen by Table 5.

The evaluation of AF evaluation in the wearable ECG device is compared to study by Lin et al. [8].
This study applied the expert system algorithm. A three-lead ECG device with 512 Hz sampling
frequency and 12-bit resolution was utilized for 10 normal and 20 AF patients. For the evaluation,
the 12-lead ECG system result was investigated by the cardiologists. The sensitivity and the positive
predictive performance are 94.56% and 99.39%, respectively. For the comparison, Lin et al. study
performed better accuracy than our study. However, our study evaluates the episode and duration
separately according to ANSI/AAMI:EC57 for the sensitivity and positive predictivity.

For computational time, a study by Chakroborty et al. is utilized for the comparison [48].
This study proposed a solution for the arrhythmia classifications. The classified arrhythmias are normal,
left bundle branch block (LBBB), right bundle branch block (RBBB), PVC, and PAC. The MIT-BIH
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Arrhythmia database was utilized for the evaluation. This study provided the overall evaluation
time is 6875.3 s. For this study in computational time evaluation, the personal computer (PC),
and smartphone-based computational time are evaluated. The PC specification is MacBook Air,
Intel Core i5, and 1.6 GHz. Meanwhile, the smartphone is iPhone 5S, A7 chip, 64-bit architecture,
and 1.3 GHz frequency. The results show that the computational time for the PC-based calculation is
about 174.802 s. Luckily, smartphone-based calculation produces 1840.791 s. The evaluation time in PC
and smartphone for MIT-BIH Arrhythmia database can be seen in Table 6. On average, the PC-based
computational is 3.591 s and the smartphone-based takes 41.836 s. Meanwhile, our proposed study has
been shown less computational time, as shown in Table 7. However, this comparison may not be fully
acceptable due to the comparison of LBBB and RBBB detections versus with AF and VF evaluations.

There are several limitations of this study. The first comes from the sliding window for
detecting AF. In this study evaluation using sample entropy needs a huge number of the R-R interval.
This condition makes delay for the evaluation. However, according to Logan et al., the 5-min sliding
window is an acceptable wait for AF detection cases [49].

The second one, ideally, the evaluation of AF and VF should be performed at the same time.
However, AF evaluation is performed based-on RR interval and VF evaluation, which is based-on raw
ECG signal, these conditions will affect one another. For AF, when evaluation follows VF detection
using the raw ECG segment, it will be in an RR shortage condition for the evaluation. Meanwhile,
for VF, when the evaluation follows the AF detection (i.e., the R-R interval-based calculation), it highly
likely mixes some rhythms inside the calculation window.

The next limitation is the algorithm sequence. Due to our study placing VF detection as the last
evaluation, it may appear that VF wave and signal that is close to its wave are similar to the QRS
complex classified as VPC class, as shown in Figure 6. This disadvantage is highly likely to be one of
the factors negatively affecting VF detection.

For SVEB (i.e., APC) detection, according to ANSI/AAMI EC57, the evaluation should cover all
data records. This condition will make a requirement to evaluate not only testing and validation data,
but also training data of the ANN, which is learnt by the model in the training.

The device also has several limitations. For this system, the microcontroller unit speed is up
to 25 MHz and the Bluetooth module will only support the data transferring maximum 2 Mbps
data rates. In this study, utilizing single lead evaluation, these MCU and BLE still work very well.
However, these conditions will make our device highly likely to have a problem for the multi-lead
ECG signal evaluation.

For the electrode, this study utilizes a wet-based electrode. This electrode may have some
disadvantages for the long-term user. The dry-up [50] and sweating [51] may affect the quality of
the signal. In further, the utilization of the dry electrode will generate solutions for the wet electrode
limitations in biopotential-based evaluation [52–55]. The dry electrode will be one of the future works
for our study.

Table 5. The AF and VF result comparison. (N/A = not available).

Arrhythmia Studies Database Number
of Data

Evaluation

Gross Statistics
Se +P

ESe E + P DSe D + P

Atrial
Fibrillation

Proposed study
MITDB

44 62 100 92 92 N/A N/A
Young et al. [45] 12 N/A N/A N/A N/A 97.7 86.77

Ventricular
Fibrillation

Proposed study
AHADB

78 90 95 28 97 N/A N/A
Park et al. [46] 11 N/A N/A 98.1 99.1 N/A N/A

Proposed study
MITDB

44 100 75 69 88 N/A N/A
Park et al. [46] 1 N/A N/A 88.5 86.3 N/A N/A

Proposed study
CUDB

35 83 90 32 94 N/A N/A
Moraes et al. [47] 30 N/A N/A N/A N/A 70.32 64.66
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Table 6. The proposed integrated algorithm evaluation time in PC and smartphone for the MIT-BIH
Arrhythmia database.

Record Smartphone (s) PC (s) Record Smartphone (s) PC (s)

100 40.975 3.638 203 41.699 3.891
101 40.964 3.508 205 43.084 4.167
103 41.256 3.653 207 42.842 3.625
105 41.337 4.747 208 43.104 4.454
106 41.028 4.404 209 43.124 4.075
108 40.916 3.194 210 41.366 3.780
109 41.146 3.400 212 42.986 3.794
111 41.131 3.077 213 43.163 4.284
112 41.239 2.716 214 42.557 3.266
113 40.822 2.623 215 43.226 3.502
114 41.064 2.716 219 41.539 2.901
115 40.980 2.361 220 42.468 2.883
116 41.361 2.909 221 41.376 2.924
117 40.698 2.404 222 42.292 3.393
118 41.143 4.853 223 42.831 3.643
119 41.020 2.702 228 42.581 4.730
121 41.003 2.942 230 42.579 3.656
122 41.278 3.073 231 42.252 3.605
123 40.672 2.799 232 41.961 3.719
124 41.001 3.200 233 44.042 5.681
200 40.861 4.761 234 43.96 5.239
201 41.831 3.406 Sum 1840.791 158.013
202 42.033 3.718 Mean 41.836 3.591

STD 0.942 0.771

Table 7. The study evaluation time comparison in personal computer (PC) and smartphone for the
MIT-BIH Arrhythmia database. (N/A = not available).

Study Arrhythmia
Device Evaluation Time (S)

Smartphone PC

Proposed study Normal, APC, VPC, AF, VF 1840.791 158.013
Chakroborty et al. [48] Normal, APC, VPC, LBBB, RBBB N/A 6875.3

5. Conclusions

This study has developed an integrated method from several algorithms for arrhythmia detection
by applying the relatively less complicated algorithms, which has purposed of the real-time wearable
device for the arrhythmia detection. The system performs based on the R-R interval and the raw ECG
signal for detecting the ECG abnormalities. This study evaluated 169 records from four databases in
PhysioNet. Our study results for SVEB (i.e., APC) and VEB (i.e., VPC) have improved as compared to
a previous study by utilizing the evaluation of ANSI/AAMI EC57:2012. For AF detection, most of
the evaluations provide a positive achievement except for the episode sensitivity. Meanwhile, for VF,
the episode sensitivity provides the decision from the whole databases ranging from 83% to 100%,
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except for the MITDB episode positive predictivity, which is 75%. In conclusion, our integrated
algorithm detection can achieve a good accuracy in comparison to other previous studies. However,
more advanced algorithms, faster MCU & BLE devices, and dry electrodes will be utilized as future
works for our study. This will be a big advantage in solving data transfer problem and allow dry
electrode multi-lead ECG system for more advanced arrhythmia detection and better evaluation.
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Abstract- Atrial fibrillation is the most commonly confronted 

cardiac arrhythmia in humans. This paper is written to use 
sample entropy and percentage of atrial fibrillation as a measure 

of regularity to measure AF. To assume the percentage of AF, 25 
long-term ECG recordings of human subjects with atrial 
fibrillation containing a total of 299 AF episodes were processed. 

The mean and SD of percentage breaking point in all the subjects 
from the MIT-BIH Atrial Fibrillation database was 0.606±0.086, 
and its sample entropy is 0.352±0.151. The mean and SD for 

sample entropy at 100% AF is 1.067±0.452. This data is used to 
predict the percentage of AF at a given sample entropy value. Our 
study concludes that the early detection of AF can be initiated by 

the AF already happened for 60%. 

I. INTRODUCTION 

According to a study, atrial fibrillation is an irregular 

supraventricular tachyarrhythmia dealing with the degradation 

of the atrial system [1]. Atrial fibrillation (AF) is the most 

frequently happened arrhythmia. It affects about 5% of the 

adult population and around 10% of the population over 60 

years of age [2-3]. It is the most commonly known cardiac 

cause of stroke [4].  Due to its relation with high risk for heart 

failure, stroke and sudden deaths, AF has a high influence on 

the longevity and quality of life of a number of people [5-6]. 

During atrial fibrillation, most symptoms are irregular 

ventricular rate, and associated risk of death is common in 

patients with history of atrial fibrillation [7-8].  

Heart rate variability (HRV) analysis for the AF cases have 

been evaluated by previous studies. The shortened HRV was 

discovered in for the AF cases [9]. The study related to the 

increased HRV regularity for the AF cases has been evaluated 

[10]. The optimization for the sample entropy parameters 

related to the AF cases has been conducted by Alcaraz et al., 

[11]. This study has the purpose for the early detection of the 

AF by evaluating the corresponding heart rate regularity by 

utilizing the sample entropy to the AF percentage. 

 

II. MATERIAL AND METHODOLOGY 

A. Materials 

ECG data for this study were obtained from MIT-BIH Atrial 

Fibrillation database to find the percentage of AF with sample 

entropy.  The database contains 25 long term ECG recordings 

of human subjects with AF containing a total of 299 AF 

episodes. The individual recordings are each 10 hours in 

duration, and contain two ECG signals each sampled at 250 

samples per seconds with 12-bit resolution over a range of ±10 

millivolts. We used signals from lead II ECG only for our 

research which is the signal with most R-R peaks facing 

upwards. 

 

B. Methodology 

In this study, we utilize the sample entropy, as the useful 

measurement regularity. The entropy calculation was initially 

by the approximate entropy by Pincus et al., [12]. The 

modified approximate entropy, sample entropy, considering no 

self-matches, developed by Richman et al., [13]. Initially, the 

data set is specified by using the MIT-BIH Atrial Fibrillation 

database [14]. The annotation of the normal sinus rhythm 

followed by the AF is investigated. This specific phenomenon 

is trimmed to a condition of one minute before AF to a minute 

of full of the AF rhythm. By having this new reconstructed 

signal, the R-R interval is evaluated and sampled to 4 Hz. The 

calculation of the sample entropy is applied to evaluate the 

regularity of the heart rate. In this study, one minute sliding 

window is utilized for the sample entropy calculation. The 

breaking point from the normal sinus rhythm to the AF rhythm 

is evaluated by the rapid slope change. Figure 1 shows the 

detail flowchart of the study. 

 



 

 

 

 
Figure 1. The flowchart of the percentage of atrial fibrillation detection. 

 

III. RESULTS 

 This study evaluates the utilization of sample entropy for 

the whole normal sinus rhythm followed by the AF rhythm into 

a 2-minute segment. The results are evaluated based on the 

sample entropy of AF at breaking point and the sample entropy 

at 100% of AF, which can be seen by Fig. 2. 

 

 

 

 

 

 

 

 

 

 
Figure 2. A subject correlating the percentage atrial fibrillation and the 

corresponding sample entropy. 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. The whole subjects percentage atrial fibrillation and the 

corresponding sample entropy. 
 

The whole case results can be seen by the figure 3. Each 

color represents each case. The evaluation produces the 

breaking point of the all subject is 0.606±0.086, and its sample 

entropy is 0.352±0.151 for the mean and the standard deviation. 

Furthermore, the 100% of atrial fibrillation signal will produce 

1.067±0.452 of the sample entropy.  
. 

IV. CONCLUSION 

This study evaluates the database of MIT-BIH Atrial 

Fibrillation containing the 25 ECG signals with 299 episodes 

totally. The results can be concluded that the possibility of the 

early detection of the AF can be recognized while the AF 

already happened for at least 60%.  

The limitation of this study is by manually choosing the 

breaking point. For our future works, the decision to detect the 

breaking point should be developed by implementing either a 

simple or a complex algorithm. 
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Abstract—The purpose of this paper is to propose a modular 

integrating algorithm. This algorithm can let the program detect 

multiple arrhythmias and is very easy to add more diseases 

detection algorithm. Also, it can save the repeated calculations in 

multiple algorithms. By a real test of the program, the result is 

that the computing time of the integrating algorithm is 46.86% 

less than the sum of the computing time of all individual 

algorithms. And the average accuracy is also improved from 

94.73% to 95.35%. 

Keywords—Arrhythmia detection, ECG processing, 

Integrating algorithm  

I. INTRODUCTION 

Many current relative researches of ECG are to use the 

program to automatically diagnose arrhythmia and the different 

arrhythmias have their algorithms to automatically detect. But 

clinically the detection of single arrhythmia is not enough. 

There are usually several arrhythmias have to be mainly and 

necessarily detected. So an algorithm that can be flexibly 

increased the detectable arrhythmia is worthy of a developing 

goal. 

The general method is first using “morphological” or 

“dynamic” concept to get features and then distinguish 

different arrhythmias by using the classifier “SVM” or 

“Artificial Neural Network”. In these kinds of methods, 

extracting features is usually a part that needs huge calculation. 

Besides, the training of the classifier and the choosing of the 

training data are also relative with the kinds and numbers of 

the target arrhythmia. Acharya et al [1] uses spectral entropy, 

Poincare plot geometry and largest Lyapunov exponent (LLE) 

of RR interval, then uses artificial neural networks (ANNs) to 

classify them. Asl et al [2] uses fifteen features which are 

further extracted from HRV and then uses generalized 

discriminant analysis (GDA) to reduce the dimensions of 

features. And then finally use support vector machine (SVM) 

to classify them. The fifteen features in this method include 

time domain features, frequency domain features, and 

nonlinear parameters. In nonlinear parameters, except spectral 

entropy, LLE which are like [1], there are still approximate 

entropy and detrended fluctuation analysis (DFA). Ye et al [3] 

uses morphological and dynamic features at the same time and 

then uses SVM to classify them. Morphological features use 

wavelet transform and independent component analysis. And 

dynamic feature also uses RRI. Oresko et al [4] uses the 

method “waveform comparison” and some general features 

(RRI, QRS width, beat width) and then uses feedforward 

multilayer perceptron (MLP) artificial neural network (ANN) 

to determine arrhythmia. Gradl et al [5] first uses the method 

“Template comparing” to deal with ECG and then extracts 

features which are difference in absolute area (ArDiff), 

maximal cross-correlation coefficient (MaxCorr), RRI, QRS 

width,…etc., then classify them by a decision tree. 

We find that the above-mentioned methods are mostly to use 

the features based on RRI or HRV. But some features are more 

suitable to find some arrhythmias and the classifiers are needed 

to be trained. If the new target arrhythmia needs to be added, 

choosing data, training and adjusting are needed to be done 

again. So we propose a modular integrating detection method 

to let the accuracy of detections keep the same level and 

integrate classified problems at the same time. We summarize 

the features which are needed by integrated algorithms. First, 

find out R peak and then individually identify QRS complex, T 

wave, P wave. With these basic feature data, we can soon 

integrate PVC detection via Iliev et al. method [6] and the 

detection of PAC and 1 degree AV block which are developed 

by us. 

II. METHODS 

A. Filtering and R peak detection 

Filtering and R peak detection are always the first step for 

extracting features. We use a band-pass finite impulse response 

(FIR) filter to remove noise. And then by referring to the 

method of Iliev et al [6], we use three dynamic thresholds to 

check the change of the slope for finding R peak. 

B. QRS determining and T detection 

We base on the features of the waveform of QRS complex 

wave and T wave to design a logical flowchart for detection. 

We use the mean-shifted first-order derivative of ECG to find 

the points that their derivative changes sign. These points are 

candidates of peak. By the mean and standard deviation of 

derivative of these peaks, we decide upper and lower 

thresholds. When derivative of a peak exceeds the threshold, 

this peak is an R peak. And the sign of derivative determines 

the polarity of the QRS complex. According to the wave 

characteristics of the QRS complex and a fixed window, we 

can find out Q and R from candidates of peak and find onset 



and offset of this QRS complex. The T wave detection is by 

deciding a window size according to RRI. Then similar the 

QRS processing, we pick the candidates of peak and find out 

onset, peak and offset of T. 

C. P detection 

Because the amplitude of P wave is possibly small and easy 

to be confused with noise, we first use the band-pass filter to 

filter the signal. Then determine the search window according 

to RRI and find peaks. Peaks number and sign can decide the 

polarity and position of P wave. Then, we find the point which 

is the most changing of the slope round P to be onset and offset. 

About the Gibbs ring effect occurred after filtering, our method 

is similar with Oresko et al [4]. We use the position and 

voltage as the reference and choose a point that can let P wave 

be closed to a full waveform in the filtered signal for solving 

the “unfound offset” condition. For the possible condition of 

“no P wave”, we delete improper P wave according to its ratio 

of length to width. 

D. Arrhythmia detection 

As the purpose of this paper, we use three algorithms to 

detect three arrhythmias. PVC detection mainly refers to the 

feature extraction method of QRS pattern waveform of Iliev et 

al [6]. By the changing degree of RRI and waveform similarity 

estimated by a sampled array, we can classify normal beats and 

PVC. With the data of P wave and QRS complex detected by 

the aforementioned algorithm, 1 degree AV block is detected 

when the related distance between P wave and QRS complex is 

out of some thresholds. PAC detection uses several 

information of PQRST, including P wave width, P wave height, 

PR interval, RR interval, QRS complex width…etc. A trained 

ANN classifier can use these data to determine the PAC beats. 

III. IMPLEMENTATION 

We use the 46 records in the MIT-BIH Arrhythmias 

Database. For simulating the one lead device that we want to 

use, we choose the Lead II signal in this database. Therefore 

two records, 102 and 104, which do not include Lead II signal 

does not be used. In order to correspond with the data 

processing mode which is dealing with five minutes ECG data 

at one time, we only use the data of thirty minutes for each 

record. In program implementation, we let each detection stage 

to be an independent algorithm object and design a data objects 

to store the results of algorithm objects. (Figure 1) According 

to this program flowchart, comparing results about the 

calculation time and the accuracy can be obtained. 

IV. RESULTS AND DISCUSSIONS 

After testing, we get the improvement rate of computing 

time is 46.86% (time spend by integrated method is 96.52sec, 

181.62sec by normal method). The accuracy is slightly better 

because some false case is fixed by other detection. 

The orientation of the research in the future can be to 

increase the detecting modules for other arrhythmias or to let 

the program be easy to build in the mobile platform by trying 

to divide the computing of all flow into several stages. 

Figure 1. Flowchart of several independent algorithm and data objects 
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Abstract—Fall events are the external causes of injury in the 

elderly adults, even leading to disability and death. In this study, 

we used a weightless and wearable device with built-in tri-axial 

accelerometer and gyroscope to record 8 types of stimulated-falls 

and 6 types of different ADL preformed by 6 health young 

subjects. A threshold-based algorithm using our device was 

developed to determine a fall event. Using our fall detection 

system, falls could be distinguished from ADL successfully for a 

total data set. 

 

Keywords—fall detection; accelerometer; gyroscopes; wearable 

system 

I.  INTRODUCTION  

Fall events are the external causes of injury in the elderly 
adults. According the WHO report, approximately 28-35% of 
people aged of 65 and over fall each year increasing to 32-
42% for those over 70 years of age [1]. Fall events cause not 
only severe injury but also disability for elderly adults. In 
2000, the relative financial costs of fall event were estimated 
to be approximately $20 billion and increase to $54.9 billion 
by 2020 [2]. An emergency response system has been 
developed to facilitate calling for help after a fall event. 
However, in some severe case of emergency cases, the 
emergency response system may not be able to active [3, 4]. 
Hence, reliable and automatic fall detection became more 
important for aging society. 

In recent years, numerous approaches by using portable 
sensors were developed for the automatic detection of falls. 
Many stragies utilized the change in aceleration magnitude to 
determine falls. However, focusing on large acceleration result 
only in many false positiving as other activities such as sitting 
and running. [5, 6] Other fall detections rely on detection of 
body orientation after a fall. These methods may be affected 
by activities with similar posture and are less effective when 
the falling posture is not horizontal.  

Using both accelerometer and gyroscope sensor for the fall 
detection was demostrated in the previous studies [7, 8]. When 
fall event occuring, the accelerometer provides valuable 
information of body inertial change due to the impact. 

Simultaneously, the gyroscope provides the unique 
information of body’s rotational velocity during a fall event. A 
fall event produces both large change of acceleration and 
angular velocity. These changes are not observed during 
normal daily activities [8]. Thus, several thresholds of 
acceleration and angular velocity were set to distinigh between 
fall event and ADL.   

In this study, we developed a weightless and wearable 
device with built-in tri-axial accelerometer and gyroscope to 
record 8 types of stimulated-falls and 6 types of different ADL 
preformed by 6 health young subjects. A threshold-based 
algorithm using our device was developed to determine a fall 
event. The feasibility of our fall detection system was 
demonstrated in this work. 

II. MATERIALS AND METHOD 

A. Wearable system and data acquisition  

A wearable system (XYZlife BC1, Kinpo Inc, Taipei, 

Taiwan) is composed of a fitting clothing and a wearable 

device BC1 with built-in tri-axial accelerometer and 

gyroscope (MPU-6500, InvenSense Inc., San Jose, US) which 

were used for data acquisition. The sensor signals were 

recorded at a frequency of 1k Hz and resolution of 16 bits, and 

saved in a tablet PC via a Bluetooth module.  

During recording, subject wears a fitting clothing with 

BC1 device, which is placed in front of right chest as shown in 

Fig. 1. 

B. The simulated fall and ADL study 

The simulated fall study involved 6 young healthy (<40 years) 

subjects. The subjects ranged in age from 30 to 39 years 

(35.2±2.2 years), body mass from 59 to 76 kg (75.2±2.2 kg), 

and height from 1.68 to 1.76 m (1.75±0.2 m) have been 

recruited for this study. Subjects performed eight different 

types of simulated-falls onto large crash mats under 

supervision condition. Tri-axial accelerometer and gyroscope 

signal were recorded during each simulated-falls via BC1 

device. 
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Fig. 1. A fitting clothing with BC1 device, which is placed in front of right 

chest (red square). Built-in tri-axial accelerometer and gyroscope 
were used to collect the signal of acceleration and angular velocity.  

 

Standing height occurred most commonly and caused 
injury to elderly people. Thus, falls from standing height in all 
directions should be stimulated [9]. Falls with knee flexion 
were also examined, similar to those observed in previous 
studies [10, 11]. The simulated-falls performed were: stand 
foreword fall (F fall), stand back fall (B fall), stand left lateral 
(SL fall), stand right lateral fall (SR fall), stand foreword fall 
with keen flexion (F fall_KF), stand back fall with keen 
flexion (B fall_KF), stand left lateral with keen flexion (SL 
fall_KF), and stand right lateral fall with keen flexion (SR 
fall_KF). 

The second of this study involved the same subjects 
performing ADL after stimulated-falls. The ADL chosen were 
the actives that may cause the large change of acceleration and 
angular velocity and carried out during normal daily life for 
elderly adults. Thus, the activities performed as follows: 

1.    Waking 8 m. 

2. Stooping down and touching the ground. 

3. Sitting down and standing up from a chair (height, 45 
cm). 

4.     Lying down and getting up from a bed (height, 15 cm). 

C. The fall algorithm 

The parameters used in analyses are similar to the previous 
studies [1,8]. The total sum acceleration vector, Acc, 
containing both static and dynamic acceleration componets, is 
caculated from sampled data using 

    √    
      

      
 , 

where   ,   , and    are the accelerations (g) in the x, y, 

and z direstions. Also, angular velocity is calculated from 
sampled data as indicated in the following: 

     √    
      

      
 , 

Where   ,   , and    are angular velocities in  x, y, and z 

directions.  

When the subject falls, the acceleration is changing rapidly 
and the angular velocity is also increasing along fall direction. 

Critical threshold in the acceleration and angular velocity are 
used to determining a fall event. These critical thresholds are 
defined and derived as follows: 

1.     FT1 (lower acceleration fall threshold): local minima for 
the Acc signal of each recorded activity are referred to as 
the signal lower peak values (LPVs). The FT1 for the 
acceleration signals is set for the smallest upper fall peak 
recorded.     

2.    FT2 (upper acceleration fall threshold): local maxima for 
the Acc signal of each recorded activity are referred to as 
the signal upper peak values (UPVs). The FT2 for the 
acceleration signals is set for the largest upper fall peak 
recorded. 

3.     FT3 (lower angular velocity fall threshold): local 
maxima for the gyro signal of each recorded activity are 
referred to as the signal UPVs. The FT3 for the angular 
velocity signals is set for the largest upper fall peak 
recorded. 

 

 

Fig. 2. The flow chart of fall algorithm using these threshold sets. 

 

In this study, we use both FT1 and FT2 in combination 
with FT3 to detect fall event. All thresholds were determined 
by the the average values of all simulated falls and ADLs. Our 
proposed algorithm is shown in Fig. 2. When Acc value falls 
below the FT1 threshold, data from the next 1 sec are 
compared to FT2 and FT3 for Acc and gyro values, 
respectively. Within this period, if both Acc and gyro values 
are higher than FT2 and FT3, a fall event was detected. If only 
one or neither is observed, a fall event is not indicated.  
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III. RESULTS AND DISCUSSION 

Fig. 3 shows a typical example of Acc and gyro signals 
while wearing BC1 device and performing different daily 
activites and forword fall sequentially. Corresponding 
indications (circle) pointed out the Acc and gyro signals 
exceeds FT1, FT2, and FT3 during subjects performed 
different ADLs and simulated-fall. When the fall event 
occuring (at ~42 sec after recording), the Acc signal decreases 
from ~1 g to ~0.3 g to cross below FT1 (0.71 g). Then, whitin 
1 sec, Acc and gyro signals increase to ~2.7 g and ~2.3 deg/s, 
respectively, to cross above FT2 (1.95 g) and FT3 (1.52 deg/s). 

The Acc signal of some ADLs decresed below FT1 easily, 
such as stooping down, lying down, and getting up. The LPVs 
of Acc signal records from 6 subjects also indicated these (Fig. 
4). However, the confirmatory FT2 are never reached at all 
ADL (Fig. 5). As previous studies, increasing acceleration was 
observed during a fall event because of the sudden body 
inertial changes [8]. We also found that the largely increasing 
acceleration at 8 simulated-falls. At the angular velocity, only 
the movement of lying down leaded to increasing angular 
velocity and crossing above FT3. (Fig. 6) The increasing 
angular velocity during lie down is possible due to the height 
of our bed is only 15 cm, and then result in subject’s 
movement similar to fall.  

Although using acceleration magnitude alone is available 
to distinguish falls and ADL in our simulated conditions, 
using three thresholds to distinguish falls and ADL have been 
demonstrated higher specificity in many previous studies [8]. 
Herein, by combining FT1, FT2, and FT3, 100% specificity 
was obtained in our testing conditions. 

 

Fig. 4 Boxplot of LPVs for 8 types of simulated-fall and 6 types of different A
DL. The red dot line is the FT1 value. 

 

IV. CONCULSION AND FUTURE WORK 

    We have demonstrated that our wearable BC1 system is 
capable to detect falls automatically via this threshold-based 
algorithm. Currently, limited subjects were recruited and 
limited ADLs were performed in this work. For the 
optimization of this algorithm, a large number of subjects will 
be involved and analyzed. Also, different ADLs are also 
considered in the future. 

Fig. 3. Display of Acc and gyro for various activities: walking, stooping, sitting down, standing up, lying down, getting up, and forward falling. 

Also the thresholds of FT1 (green line), FT2 (block line), and FT3 (purple line) were set to determinate a fall event. Corresponding circle dots 

are the data points that upper and lower than thresholds. A fall event is indicated when FT2 and FT3 are detected within 1 sec after FT1 was 
detected (red square).  
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Fig. 5 Boxplot of LPVs for 8 types of simulated-fall and 6 types of different A
DL. The red dot line is the FT2 value. 

 

Fig. 6 Boxplot of LPVs for 8 types of simulated-fall and 6 types of different A
DL. The red dot line is the FT3 value. 
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Abstract—The linear accelerometer is called G-Sensor. It 

supplies the information of accelerating change when some motion 

happens. The current G-Sensor products in the market are 

supported by 3-dimension information. The G-Sensor becomes the 

one of consumer components in this trend of MEMS technology 

development. The applications using G-Sensor components are 

working in the current market, for example, to be a way to control 

the game working, to control user interface, to drive some 

application programs or change slides by knocking the side of a 

device, to detect the falling event, and let hard disk inside the 

notebook have enough time to shutdown. And, G-Sensor can be 

implemented inside a pedometer. For wearable device, G-Sensor is 

used to the fitness application. The aim of this paper was to validate 

step counts and cadence calculations from acceleration data during 

dynamic activity. The proposed algorithm to calculate the accurate 

rate of dynamic step detection is 95%. 

Keywords—G-Sensor; acceleration; steps 

I.  INTRODUCTION  

Obesity management for achieving an effective weight loss 
includes dietary modification and exercise [1]. Regular 
exercise is an effective method of weight loss and 
maintenance of weight. Exercise can prevent disease and 
maintain health. Therefore pedometers are often used as 
motivational tools to increase physical activity. Many previous 
studies have assessed the step count and gait event accuracy of 
pedometers, accelerometers, and gyroscopes [2–7]. Kenton 
compared commercial devices has the accuracy of 92% [8]. 
For these papers, they put the device on the waist. If the 
devices do not put on the waist, the accuracy must be 
decreased. We put our device on the chest, because our device 
has more functions that one is single lead ECG monitor and 
another is activity tracker (i.e., G-Sensor). We develop a 
simple and more effective algorithm to count steps and 
cadences.  

II. METHOD 

A. Data Collection 

Six-axis sensor (Invensense MPU6500) was sampled to 
100 Hz and calculated to steps by using a wearable G-sensor 
device (XYZ life BC1, Kinpo Inc., Taipei, Taiwan). The 

subjects wear a cloth with BC1 device, as shown in Fig. 1(A). 
The steps data was logged into a tablet PC via BC1 device 
shown in Fig. 1(B). 

 

 

Fig. 1 (A) A fitting clothing with the BC1 device was used to 
collect the G-Sensor signals by the device placed in front of 
the left chest (red square). (B). The G-Sensor device BC1.  

 

We collect five subjects walking data and set four kind of 
steps(50, 100, 300 and 500 steps). In order to avoid human 
counting errors, we use OMRON (Calori Scan HJA-310) to 
compare our device. 

B. Algorithm Flow 

We define the waveform of one step is like sine wave. And 
we define our algorithm as shown in Fig. 2. We use one sec 
data to set the calculating window. Firstly, we calculate 3-axis 
raw data to set data ACC where the equation is as shown in (1). 
Secondly, we take every two ACC to average. Third, we set 
the wave crest and wave trough candidate. Then, we can get 
the slope value. Fourth, if slope value is larger than threshold, 
the wave crest is large than ACC, and the wave trough is 
smaller than ACC, we consider that this is one step. 

    √                  (1) 
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Fig. 2 This is the flow chart of calculating steps 

 

III. RESULT 

  Table 1 is showed the error of step differnce between 
BC1 and real steps. According to the result, we can find the 
more steps which are smaller error values. But most of the 
pedometer are the more steps are bigger error values. Because 
we use dynamic windows that the average can be based on the 
step waveform to correct the value. For example, according to 
the Fig 3, these waveforms are to calculate the number of 
steps. Therefore, we must define what is “One Step”. Fig. 3 is 
shown the three kinds of activity wave. These waveforms are 
very similar shape. And there are different with the detail data 
from G-Sensor value and frequency. We compare with the 
pick up as shown in Fig. 4 and walk. These waveforms pattern 
are different. So, the pick up is not calculated to step by our 
algorithm. The results suggest that the proposed analysis 
methods are suitable for step counting using tri-axial 
accelerometers on the chest in a free-living environment. 

 

IV. CONCLUSION 

In this paper, we develop a simple and more effective 
algorithm to count steps and cadences. The proposed 
algorithm to calculate the accurate rate of dynamic step 
detection is 95% when the step number is greater than 100 
steps. It means that the proposed analysis methods are suitable 
for step counting using tri-axial accelerometers on the chest in 
a free-living environment. 

TABLE I.  ERROR STEP DIFFERENCE 

Subjects 
Steps 

50 100 300 500 

[A] 8% 5% -0.3% -1% 

[B] 12% 0% -1% 0.4% 

[C] 8% 0% 0.3% 0.4% 

[D] 4% 3% 0.7% 1.2% 

[E] -6% 1% -0.3% -0.2% 

Mean 5.2% 1.8% -0.12% 0.16% 

 

 

Fig 3. Three kinds of activity waveform 

 

 

Fig. 4 The pick up waveform 
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